

LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Ano 1

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS


LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

1. Projeto	3
2. Relatórios Mensais	54
3. Relatórios de Etapa	323
4. Solicitações de Ajuste	673
5. Processos de Compra	713

Ano 1

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Projeto

Ano 1

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

Projeto de P&D PD-06491-0513/2018

Identificação

Título

LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Gerente do projeto

CLAILTON LEOPOLDO DA SILVA

Coordenador do projeto

GERMANO LAMBERT TORRES

Gerente do programa

Empresa proponente

Razão social: COPEL GERAÇÃO E TRANSMISSÃO S.A.

Nome fantasia: COPEL GET

Empresa(s) executora(s)

Razão social: INSTITUTO GNARUS

Nome fantasia: GNARUS

Duração do projeto

Valor total contratante

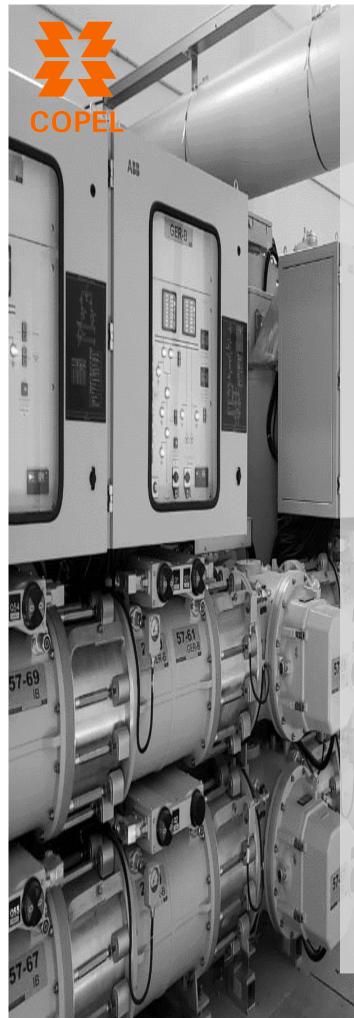

Valor total contratada

Valor total projeto

Resumo

Este projeto visa auxiliar no processo de detecção e localização de faltas internas em subestações blindadas a SF6, bem como monitorar LTs. Via um conjunto de sensores e algoritmos de processamento de sinais é possível determinar em qual compartimento o curto-circuito ocorreu, e ainda, acompanhar a operação das LTs. O conjunto de sensores utilizado será composto por alguns próprios e outros do sistema de medição existente. Todos coletando dados de maneira on-line e completamente não invasiva, que forma de não afete em nada o funcionamento da subestação e nem prejudique a sua garantia. Os algoritmos de processamento de sinais serão feitos baseados em técnicas inteligentes híbridas, misturando técnicas de redes neurais plásticas profundas convolucionais, processamento estatísticos de ordem superior e técnicas de raciocínio baseados em casos. O sistema desenvolvido (hardware e software) será testado em laboratório e será instalado em uma SE da COPEL.

07/06/19 19:50:12 1 de 50


LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Relatórios Mensais

Ano 1

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Relatórios de Etapa

Ano 1

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

CURITIBA – ITAJUBÁ 2021

LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Relatório da Etapa 01: Revisão Bibliográfica

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

INSTITUTO GNARUS

CNPJ/MF 07.863.331/0001-02 Rua Cel. Francisco Braz, 185 - Sala 302 - Centro, Itajubá - MG, 37500-052

PD-06491-0513/2018 LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Relatório da Etapa 01: Revisão Bibliográfica

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

SUMÁRIO

1	IN	ITRODU	JÇÃO	9
2	DI	ESENVO	DLVIMENTO DA ETAPA	. 11
	2.1	DESE	NVOLVIMENTOS POR ÁREA DE ATUAÇÃO	11
	2.2	OBJE	TIVOS DO PROJETO	12
	2.3	ESTA	DO DA ARTE E TRABALHOS CORRELATOS	13
		2.3.1	Revisão dos principais trabalhos sobre localização de defeitos em subestaç	ões
		blinda	das	14
		2.3.2	Revisão dos principais trabalhos sobre redes neurais profundas	16
		2.3.3	Revisão dos projetos de P&D da ANEEL para outras empresas	16
		2.3.4	Revisão dos projetos correlatos desenvolvidos por este grupo de pesquisa	17
3	RE	EVISÃO	SOBRE OPERAÇÃO E MANUTENÇÃO DE UMA SUBESTAÇÃO SF6	. 19
	3.1	OPER	RAÇÃO DE SUBESTAÇÃO ISOLADA DE GÁS	19
		3.1.1	Operação dos disjuntores na subestação	20
		3.1.2	Operação das seccionadoras na subestação	20
		3.1.3	Operação de chaves de aterramento na subestação	21
		3.1.4	Operação de transformadores de instrumentos na subestação	23
		3.1.5	Janelas de visualização da subestação	24
	3.2	CÂM	ARAS E ZONAS DE GÁS	25
	3.3	PRIN	CÍPIOS DE INTERTRAVAMENTO	26
		3.3.1	Gabinetes de controle local	28
		3.3.2	Alarmes de uma SIG	30
		3.3.3	Exemplo de comutação de SIG	31
		3.3.4	Complementos sobre a operação de uma SIG	34
	3.4	MAN	IUTENÇÃO EM UMA SIG	34

		3.4.1	Processos típicos de manutenção	34
		3.4.2	Reparando vazamento de gás SF6	37
4	IN	STALAÇ	ÇÃO DE UMA SUBESTAÇÃO ISOLADA DE GÁS	43
	4.1	ITENS	S NECESSÁRIOS PARA A IMPLANTAÇÃO DE UMA EXTENSÃO	44
		4.1.1	Quando uma extensão é antecipada na fase inicial do projeto	44
		4.1.2	Quando uma extensão não foi planejada na fase inicial do projeto	44
	4.2	CON	TINUIDADE DE SERVIÇOS DURANTE A OPERAÇÃO DE EXTENSÃO	45
	4.3	TEST	E DE INTERFACE	46
	4.4	ATUA	ALIZAÇÃO DE UMA SIG	46
		4.4.1	Problemas com instalações antigas da SIG	47
		4.4.2	Modificação (Retrofit) de uma SIG	47
	4.5	LIMI	TES OPERATIVOS DE UMA SIG	49
		4.5.1	Limites térmicos e sobrecarga da SIG	49
		4.5.2	Projeto de corrente de classificação contínua	50
		4.5.3	Definindo os limites de uma SIG	51
		4.5.4	Corrente máxima de carga contínua	52
		4.5.5	Capacidade de sobrecarga de curto prazo	53
		4.5.6	Calculando sobrecargas	54
5	RE	VISÃO	SOBRE REDES NEURAIS PROFUNDAS	57
	5.1	EXEN	IPLOS DE INFERÊNCIA	57
	5.2	EXEN	IPLOS DE INFERÊNCIA	59
	5.3	APRE	NDIZADO DE MÁQUINA	60
	5.4	APRE	NDIZADO PROFUNDO	62
	5.5	MED	IÇÃO DE PROFUNDIDADE DE UM MODELO	64
	5.6	TEND	DÊNCIAS HISTÓRICAS EM APRENDIZAGEM PROFUNDA	68
		5.6.1	Primeira onda	70

		5.6.2	Segunda onda	74
		5.6.3	Terceira onda	76
	5.7	AUN	IENTANDO OS TAMANHOS DO CONJUNTO DE DADOS E DOS MODELOS	77
		5.7.1	Evolução dos exemplos dos conjuntos de dados	77
		5.7.2	Evolução do tamanho dos modelos	80
		5.7.3	Aumento da precisão, complexidade e impacto do mundo real	83
6	CO	NCLUS	SÕES E RECOMENDAÇÕES	87
7	RE	FERÊN	CIAS	89
	7.1	REFE	RÊNCIAS DO CAPÍTULO 2	89
			RÊNCIAS DO CAPÍTULO 2	
	7.2	BIBL		92

LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Relatório da Etapa 02: Estudo do Funcionamento da Subestação Blindada da COPEL

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

INSTITUTO GNARUS

CNPJ/MF 07.863.331/0001-02

Rua Cel. Francisco Braz, 185 - Sala 302 - Centro, Itajubá - MG, 37500-052

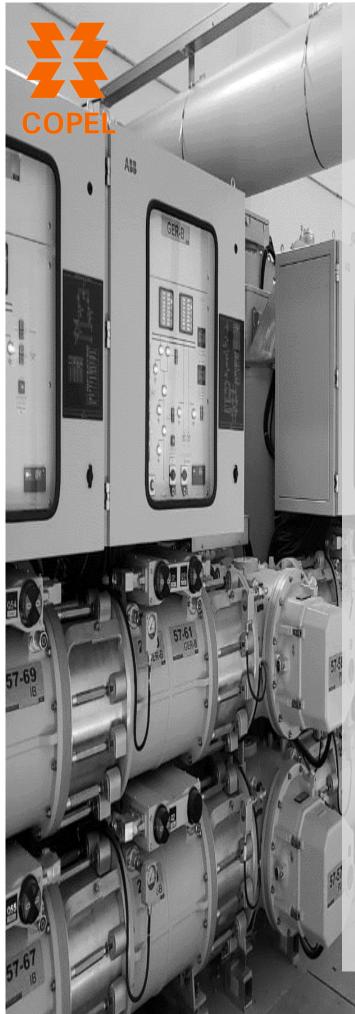
PD-06491-0513/2018 LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Relatório da Etapa 02: Estudo do Funcionamento da Subestação Blindada da COPEL

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

SUMÁRIO


1	IN	ITRODU	JÇÃO	11
2	DI	ESENVO	DLVIMENTO DA ETAPA	13
	2.1	OBJE	ETIVOS DO PROJETO	13
	2.2	DESE	ENVOLVIMENTOS POR ÁREA DE ATUAÇÃO	14
3	ES	TUDO	DA SUBESTAÇÃO CURITIBA ELK04 145 KV	19
	3.1	DISJ	UNTOR TIPO ELK-CBO	19
		3.1.1	Mecanismo Operacional da Câmara de Interrupção	21
		3.1.2	Dados Técnicos	22
		3.1.3	Diagramas Operacionais	23
	3.2	MEC	ANISMO OPERACIONAL DO DISJUNTOR TIPO HMB	25
		3.2.1	Módulos de componentes do mecanismo operacional	25
		3.2.2	Comissionamento	25
		3.2.3	Instruções para a operação	27
		3.2.4	Verificações	29
		3.2.5	Torques de aperto para parafusos	30
	3.3	DISJI	UNTOR HMB-1 E HMB-2	31
		3.3.1	Princípio de Funcionamento do Mecanismo Operacional	31
		3.3.2	Operando Manualmente o Mecanismo Operacional	33
		3.3.3	Mecanismo de operação do disjuntor HMB-1	35
		3.3.4	Mecanismo de operação do disjuntor de dados técnicos	37
		3.3.5	Mecanismo de operação do disjuntor HMB-2	40
	3.4	RELÉ	DE DENSIDADE DE GÁS	44
		3.4.1	Princípio de Projeto e Operação	45
	3.5	CHA'	VE SECCIONADORA / ATERRADA TIPO ELK-DE0 / 520	46

	3.5.1	Princípio de Projeto e Operação do Dispositivo	46
	3.5.2	Mecanismo Operacional	50
	3.5.3	Dados Técnicos	58
	3.5.4	Diagrama Operacional	63
3.6	CHA	VE SECCIONADORA / ATERRADA TIPO ELK-DE0 / 735	. 63
	3.6.1	Projeto e Princípio de Operação do Dispositivo	64
	3.6.2	Mecanismo Operacional	67
	3.6.3	Dados Técnicos	75
3.7	CHA	/E DE ATERRAMENTO TIPO ELK-EB0/735	. 81
	3.7.1	Mecanismo Operacional	83
	3.7.2	Intertravamento	84
	3.7.3	Controle local manual	87
	3.7.4	Dados Técnicos	92
3.8	CHA	VE DE ATERRAMENTO COM CAPACIDADE DE CRIAÇÃO DE CURTO-CIRCUITO T	IPO
ELK	-ESO / 5	520	. 96
	3.8.1	Projeto e Princípio de Operação do Dispositivo	97
	3.8.2	Princípio de Projeto e Operação do Drive	98
	3.8.3	Dados Técnicos	103
	3.8.4	Diagrama Operacional	106
3.9	TRAN	SFORMADOR DE CORRENTE INTEGRADO	106
3.1	O TRAN	NSFORMADOR DE TENSÃO INDUTIVO	108
	3.10.1	Princípio de Projeto e Operação	108
	3.10.2	Dados Técnicos	109
3.1	1 AQU	ECEDOR ANTI-CONDENSAÇÃO	110
ES	TUDO	DA SUBESTAÇÃO CURITIBA ELK14 245 KV	117
	- 100	DISJUNTOR ELK-SP14	117

	4.1.1	Informações gerais	117
	4.1.2	Projeto do disjuntor	118
	4.1.3	Manutenção	123
4.2	DESC	ONECTADOR/EARTHING SWITCH TIPO ELKDE0	123
	4.2.1	Informações gerais	123
	4.2.2	Projeto do Seccionador/Chave de aterramento	124
	4.2.3	Mecanismo operacional	127
	4.2.4	Operação Manual (Tensão de Controle Presente)	129
	4.2.5	Bloqueio	134
	4.2.6	Manutenção	135
4.3	CHAV	'E DE ATERRAMENTO COM CAPACIDADE DE CRIAÇÃO DE CURTO-CIRCUITO 1	ГІРО
ELK-	-ES 0		135
	4.3.1	INFORMAÇÕES GERAIS	135
	4.3.2	Projeto da chave de aterramento com capacidade de fazer curto-circuito	136
	4.3.3	Mecanismo operacional	137
	4.3.4	Intertravamento	138
	4.3.5	Intertravamento de manivela	138
	4.3.6	BLOQUEIO DE POSIÇÃO DO INTERRUPTOR	139
	4.3.7	Controle local manual	140
	4.3.8	Controle manual (Controle de tensão Presente)	140
	4.3.9	Controle manual (Controle de tensão Ausente)	141
	4.3.10	Intertravamento de posição	143
	4.3.11	Cadeado	143
	4.3.12	Bloqueio de cilindro	144
4.4	CONE	XÃO DO BARRAMENTO	145
	4.4.1	Informações gerais	145

	4.4.2	Descrição	146
4.5	ELEM	IENTO DE COTOVELO ELK-VW14	147
	4.5.1	Informação geral	147
	4.5.2	Descrição	148
4.6	MÓD	ULO T E X	149
	4.6.1	Informação geral	149
	4.6.2	Manutenção	150
4.7	DIVIS	OR COM TRANSFORMADOR DE CORRENTE INTEGRADO ELK-VY14	150
	4.7.1	Informações gerais	150
	4.7.2	Descrição	151
	4.7.3	Manutenção	153
4.8	TAM	PA FINAL	154
	4.8.1	Informações gerais	154
	4.8.2	Descrição	155
	4.8.3	Manutenção	156
4.9	MON	IITOR DE DENSIDADE ELK-WT14	156
	4.9.1	Informações gerais	156
	4.9.2	Descrição	157
	4.9.3	Manutenção	158
4.10	DISPO	OSITIVO DE ALÍVIO DE PRESSÃO ELK-XA14	159
	4.10.1	Informações gerais	159
	4.10.2	Descrição	160
	4.10.3	Manutenção	162
	4.10.4	Revisão	162
4.13	1 ISOLA	ADOR DE BARREIRA E SUPORTE	163
4.12	2 BUCH	HA COM ISOLADOR COMPOSTO TIPO ELK-HB14	165

	4.12.1 Informações gerais	. 165
	4.12.2 Descrição	. 167
	4.12.3 Manutenção	. 167
4.13	3 TRANSFORMADOR DE TENSÃO ELK-PI 04	.168
	4.13.1 Informações gerais	. 168
	4.13.2 Descrição	. 169
	4.13.3 Manutenção	. 170
4.14	4 DIVISOR DE SAÍDA ELK HKK-HKY14 E CONEXÃO DE CABO (IEC) ELK HK14IN	.170
	4.14.1 Informações gerais	. 170
	4.14.2 Descrição	. 171
	4.14.3 Manutenção	. 172

LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Relatório da Etapa 03: Estudo da Observabilidade da Subestação

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

INSTITUTO GNARUS

CNPJ/MF 07.863.331/0001-02

Rua Cel. Francisco Braz, 185 - Sala 302 - Centro, Itajubá - MG, 37500-052

PD-06491-0513/2018 LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Relatório da Etapa 03: Estudo da Observabilidade da Subestação

DOCUMENTO RESTRITO


CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

SUMÁRIO

1	IN	ITRODU	JÇÃO	7
2	DI	ESENVO	DLVIMENTO DA ETAPA	9
	2.1	OBJE	TIVOS DO PROJETO	9
	2.2	DESE	ENVOLVIMENTOS POR ÁREA DE ATUAÇÃO	10
3	н	STÓRIC	CO DA OBSERVABILIDADE EM SUBESTAÇÕES	13
4	E۱	/OLUÇ <i>Î</i>	ÃO DOS SISTEMAS DIGITAIS EM SUBESTAÇÕES	17
	4.1	SISTI	EMA SCADA - "ESTIMADORES DE ESTADO"	19
	4.2	DIGI	TALIZAÇÃO DE SUBESTAÇÕES	21
		4.2.1	Proteção e Controle em uma SE Digitalizada	21
	4.3	SISTI	EMAS INTELIGENTES DE CONTROLE	24
5	SI	STEMA	S DIGITAIS EM SUBESTAÇÕES	29
	5.1	SUBI	ESTAÇÃO ELK-14 245KV	29
		5.1.1	Disjuntor	29
		5.1.2	Chave Seccionadora / Aterramento	30
		5.1.3	Chave de Aterramento com Capacidade de Criação de Curto-Circuito	31
		5.1.4	Conexão de Barramento	31
		5.1.5	Elemento de Cotovelo	32
		5.1.6	Módulo T	33
		5.1.7	Divisor com Transformador de Corrente Integrado e Transformador de To 33	ensão
		5.1.8	Bucha com Isolador Composto	34
		5.1.9	Divisor de Saída e Conexão de Cabo	35
	5.2	SUBI	ESTAÇÃO ELK-14 245KV	35
		521	Disjuntor	36

		5.2.2	Chave Seccionadora / Aterramento	37
		5.2.3	Chave de Aterramento com Capacidade de Curto-Circuito	37
		5.2.4	Transformador de Corrente Integrado e Transformador de Tensão Indutiv	o .38
		5.2.5	Elemento de Cotovelo	39
		5.2.6	Bucha com Isolador Composto	39
6	TE	ORIA I	DOS CONJUNTOS APROXIMADOS	41
	6.1	CON	CEITOS BÁSICOS	42
	6.2	PRO	PRIEDADES OPERACIONAIS	44
	6.3	EXEN	MPLO ILUSTRATIVO	45
	6.4	ATRI	BUTOS DISPENSÁVEIS E ATRIBUTOS INDISPENSÁVEIS	48
7	PF	SUDUS.	TA DO CLASSIFICADOR DE OBSERVABILIDADE UTILIZANDO CONJUI	UTOS
7		(0) 03	TA DO CLASSIFICADOR DE ODSERVADILIDADE OTILIZARDO CONSOL	V1 U3
			OS	
		XIMAD		49
	PROX	KIMAD CON	os	 49 49
	PRO) 7.1	KIMAD CON	OS	49 49 50
	PRO) 7.1	CON APRI	OS	49 49 50
	PRO) 7.1	CON APRI 7.2.1	OS	49 50 rticos
	7.1 7.2	CON APRI 7.2.1	OS	49 50 eticos56
	7.1 7.2	CON APRI 7.2.1 7.2.2 APLI	OS	49 50 eticos56 5760

LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Solicitações de Ajuste

Ano 1

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

CURITIBA – ITAJUBÁ 2021

LOCALIZAÇÃO DE FALTAS EM SUBESTAÇÕES BLINDADAS DE SF6 COM MONITORAÇÃO DE LINHAS ADJACENTES

Processos de Compra

Ano 1

DOCUMENTO RESTRITO

CLAILTON LEOPOLDO DA SILVA – COPEL GET GERMANO LAMBERT-TORRES - INSTITUTO GNARUS

CURITIBA – ITAJUBÁ 2021